Beta-carotene conversion to vitamin A decreases as the dietary dose increases in humans.

Novotny JA, Harrison DJ, Pawlosky R, Flanagan VP, Harrison EH, Kurilich AC.

USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.

OBJECTIVE: It has been suggested that high doses of beta-carotene limit its conversion to vitamin A, yet this effect has not been well established in humans.

METHODS: A feeding study was conducted in a randomized crossover design in which volunteers consumed 2 doses of deuterium-labeled beta-carotene on 2 occasions, with beta-carotene and vitamin A response assessed by plasma area under the concentration time curve (AUC). Seven volunteers (4 men, 3 women) consumed each of 2 doses of beta-carotene-d8 and provided serial blood samples for 37 d after each dose. beta-Carotene doses were 20 and 40 mg. Plasma beta-carotene-d8 was assessed by HPLC-MS. Plasma retinol (ROH)-d4, which was derived from the beta-carotene-d8, was evaluated by GC-MS after saponification to convert retinyl esters to ROH prior to the formation of the trimethylsilyl ether.

RESULTS: The plasma AUC for beta-carotene-d8 increased 2-fold from the 20-mg dose to the 40-mg dose. The plasma AUC for ROH-d4 increased 36% from the 20-mg dose to the 40-mg dose.

CONCLUSION: These results establish that, in humans, beta-carotene conversion to vitamin A decreases as the dietary dose increases.

PMID: 20237064